Math Logic: Model Theory \& Computability
Lecture 07

Definability. let $A:=(A, \sigma)$ be a σ-stinchure.
Def. Lt $P \leq A$ (think of clements of P as parametres).
For $n \in \mathbb{N}^{+}:=\{1,2,3, \ldots\}$, we say that a set $B \leq A^{n}$ is ϕ-definable if there is an extended σ-formula $\varphi(\vec{v})$, where $|\vec{v}|=n$, such that

$$
B=\left\{\vec{a} \in A^{n}: \underline{A} \vDash \varphi(\vec{a})\right\} .
$$

More genecally, B is called P-definable if there is an eerterded σ-formula $\varphi(\vec{v}, \vec{u})$, whine $|\vec{v}|=n$, and $\vec{p} \in P^{m}$, where $|\vec{u}|=m$, sch that

$$
B=\left\{\vec{a} \in A^{4}: \underline{A} \mid=\varphi(\vec{a}, \vec{p})\right\} .
$$

A tunction $f: A^{h} \rightarrow A$ is called P-definable if its graph

$$
G_{f}:=\left\{(\vec{a}, b) \in A^{n} \times A: f(\vec{a})=b\right\}
$$

is P-definable. Finally, a tuple $\vec{a} \in A^{n}$ is said to be P-definable if the singleton $\{\vec{a}\} \subseteq A^{n}$ is P-definctle.
We say h t a sot/function/eleneat is definable if it is A-definable.
Examples.
(a) In $\underline{R}:=(\mathbb{R}, 0,1,+, 1)$, the set of positive seals is \varnothing-definable by the extended formula $\varphi_{>0}(x):=x \neq 0 \wedge \exists y(x=y \cdot y)$.
Also, the relation $<\leq \mathbb{R}^{2}$ is D-definable bs the formula

$$
\Psi_{L}(u, v):=\exists w\left(\varphi_{>0}(w) \wedge u+w=v\right)
$$

Also the $r \leftrightarrow-r$ taction is \varnothing-definable by $\varphi_{-}(x, y):=(x+y=0)$. Using $H_{i s}$, we can recline:

$$
\psi_{<}(u, v):=" v-u>0 ":=\exists w\left(\varphi_{-}(u, w) \wedge \varphi_{>}(v+w)\right) \text {. }
$$

(b) In an σ-站cacture $\underline{A}:=(A, \sigma)$, every tuple $\vec{a} \in A^{n}$ is definable, in tact P-definable, tune $P:=$ the elements of A hat appear in \vec{a}. Indeed, if $\vec{a}:=\left(a_{1}, \ldots, a_{n}\right)$ and $P=\left\{a_{1}, \ldots, a_{n}\right\}$, then taking $\vec{p}:=\vec{a}$, we see that

$$
\{\vec{a}\}=\left\{\vec{b} \in A^{n}: A \neq \varphi(\vec{b}, \vec{p})\right\}
$$

where $\varphi(\vec{x}, \vec{y}):=\bigcap_{i=1}^{n} x_{i}=y_{i}$, when e $\vec{x}:=\left(x_{1}, \ldots, x_{n}\right), \vec{y}:=\left(y_{1}, \ldots, y_{n}\right)$.
(c) If two sets are P. definchle, than so is their union, also their complements. In particular, it follows from (b) that every finite subset $F \subseteq A^{n}$ is deficuable (bat with parametres).
(d) In $\mathbb{R}:=(\mathbb{R}, 0,1,4, \cdot)$, the sot \mathbb{N} is nat definable, but we haven't developped the necessary tools (quantifier elimiaction) to prove this.
(e) In $\underline{N}:=(\mathbb{N}, 0, S, t, \cdot)$, every doticuble set is in taut \varnothing-definable. fudeud, each formula only uses frutel, a nay paranctres and each natural umber $n \in \mathbb{N}$ is \varnothing - -lefinathle lu the formula

$$
\varphi(x):=\underbrace{S(S(\ldots S(0))}_{n}=u .
$$

(f) Let $\operatorname{Th}(\underline{N}):=\left\{\varphi \in \operatorname{Sentences}\left(\sigma_{\text {arnhem }}\right): \underline{N} \vDash \varphi\right\}$. Each Farkm -word has a unique code $\in \mathbb{N}$, so $l_{C t} T h(\overline{\mathbb{N}})^{7} \subseteq \mathbb{N}$ the set of cocreapocching codes. It's a harem ot Tarsi that "Th $(\underline{N})^{1}$ is not definable in \underline{N}.
(g) Every function $\mathbb{N}^{n} \rightarrow \mathbb{N}$ that one can program on a computer is \varnothing-difiurble ir $\underline{N}:=(\mathbb{N}, 0, s,+, \cdot)$, ic particala, $n \leftrightarrow 2^{n}$. However, wa need t postpone previn this until later.
(h) $\underline{R}:=(\mathbb{R}, 0,1,+, \cdot)$. The set $\{\sqrt{2},-\sqrt{2}\}$ is \varnothing-definable by the foomin
la $\varphi(x):=\left(x^{2}=2\right)$, them $x^{2}:=x \cdot x$ and $2:=1+1$, Than, $\sqrt{2}$ is also \varnothing-defictle by $\psi(x):=\varphi(x) \wedge \varphi_{>0}(x)$.
(i) However, in $\underline{C}:=(\mathbb{C}, 0,1,+, \cdot)$, the set $\{\sqrt{2},-\sqrt{2}\}$ is still ф-clefichble be the same formula as abon, la yt $\sqrt{2}$ is not D-detinable, which again follows from the fact that \subseteq admits quantities elini. nation la theorem we will prove (caters), hence the only ϕ-definable sets are the sets of roots of polynomials, and heir Boolean combinations, er. Finite unions and oupleveats. Of cons, $\sqrt{2}$ is $\{\sqrt{2}\}$-definable in \underline{C}.

We alreny, sow that advanced techniges life quantifier elimination is used to prove noudefinubility, bat here is a cheap technigne for kiss.

Prop. Let $\underline{A}:=(A, \sigma), \underline{B}:=(B, \sigma)$ be σ-structures and $h: \underline{A} \rightarrow \underline{B}$ be an isomorphism. Then for each extended σ-formula $\varphi(\vec{v})$ and $\vec{a} \in A^{|\vec{v}|}$,
$\underline{A} \vDash \varphi(\vec{a})$ if and only if $\underline{B} \vDash \varphi(h(\vec{a}))$.
Proof. We prove by inclactien on the contraction of φ. let $\vec{a} \in A^{|\vec{v}|}$.
Case 1: $\varphi:=t_{1}=t_{2}$. Then we already know from lecture 5 that $h\left(t_{i}^{\theta}(\vec{a})\right)=$ $t_{i}^{B}(h(\vec{a}))$, so $t_{1}^{\hat{A}}(\vec{a})=t_{2}^{A}(\vec{a})$ it and only if $t_{1}^{\hat{B}}(h(\vec{a}))=$ $t_{2}^{B}(h(a))$, where \Leftrightarrow holds became h is infective.

Case 2: $\varphi:=R\left(t_{1}, \ldots, t_{k}\right)$ here $R \in \operatorname{Re}_{k}(\sigma), t_{1}, \ldots, t_{k}$ we σ-terms. Then b_{y} the $A \vDash R\left(t_{1}\left(a^{\prime}\right), \ldots, t_{k}(\vec{a})\right)$ if and only if $\underline{B} \vDash R\left(t_{1}(h(\vec{a})), \ldots, t_{k}\left(h\left(a^{a}\right)\right)\right)$ by the detrition of isowerphism.

Case 3: $\varphi:=\varphi_{1} \vee \varphi_{2}$. Follows easily b_{b} from the inchatrir Iypothesis.
Case 4: $\varphi:=\neg \psi$. Follows easily b_{y} from the inchatron hypothesis.
Case 5: $\varphi:=\exists u \psi$. Then $\psi(\vec{v}, u)$ is an extended formula, so by the inducton Igrothesis for any $a^{\prime} \in A$,
$\underline{A} \equiv \Psi\left(\vec{a}, a^{\prime}\right)$ if and only if $\underline{B} \vDash \Psi\left(h(\vec{a}), h\left(a^{\prime}\right)\right)$.
Thus, $A \not F \exists_{u} \Psi(\vec{a}, u)$ if and only if there is $a^{\prime} \in A$ st. $A \not F \psi\left(\vec{a}, a^{\prime}\right)$ if and only if there is $a^{\prime} \in A$ s.t. $B \vDash \psi\left(u\left(a^{\prime}\right), h\left(a^{\prime}\right)\right)$
[here $\hat{1}$ is h_{y} ianjectivity of h] if and only if there is $b \in B$ sit. $B \vDash \psi(h(a), b)$ if and only if $\underline{B}=\exists_{n} \varphi(h(\vec{a}), u)$.

Cor. Let $A:=(A, \sigma)$ be a σ-stature and $D \subseteq A^{n}$ be a P-definable set. Then every automorphism $h: \underline{A} \rightarrow \underline{A}$ that fixes P point rise (i.R. $h(p)=p$ for every $p \in P$) must fix \bar{D} setwise (ie. $h(N)=D)$.
prot. Let $\varphi(\vec{v}, \vec{u})$ be an extended r-formula and $\vec{p} \in P^{|\vec{u}|}$ sit.

$$
D=\left\{\vec{a} \in A^{n}: \underline{A} \vDash \varphi(\vec{a}, \vec{p})\right\} .
$$

let $h: A \rightarrow \underline{A}$ be an automorphism fixing P pointwise. Then

$$
\begin{aligned}
h(D) & =\{h(\vec{a}): \underline{A} \vDash \varphi(\vec{a}, \vec{p})\} \stackrel{\downarrow_{y}}{=}\{h(\vec{a}): \underset{A}{A} \vDash \varphi(h(\vec{a}), h(\vec{p})\} \\
(h \text { fixes } \vec{p}) & =\{h(\vec{a}): \underset{A}{A} \vDash \varphi(h(\vec{a}), \vec{p})\}=\left\{\vec{b} \in A^{h}: \underline{A} \vDash \varphi(\vec{b}, \vec{p})\right\}=D .
\end{aligned}
$$

Examples. (a) In $(\mathbb{Z}, 0,+)$, the set \mathbb{N} is not \varnothing-definable bear $h: \underset{z \rightarrow-\mathbb{Z}}{\mathbb{Z}}$ is an automorphism which maps \mathbb{N} t. $-\mathbb{N}$, heave does not ix \mathbb{N} sechise.
(b) In $Z:=(\mathbb{D}, 0,+, \cdot)$, the set \mathbb{N} is $\not D$-definable due to Lagrangets Four Squares theorem, which states that every nstacal number is a sum of four squares of integers, so

$$
\mathbb{N}=\{n \in \mathbb{Z}: \underline{Z} \vDash \exists x \exists y \exists z \exists v(x \cdot x+y \cdot y+z \cdot z+v \cdot v=n)\} .
$$

